

Seeing and Responding to Signals Fundamentals

17 Nov 2009

- Why is signal sighting important?
- Mental processes involved in reading and responding to a signal
- Physics of the eye
- Human Factors considerations sources of error.
- Good practice

Why is signal sighting important?

PYB Consulting

- Drivers reliably see signal in nearly all cases
 - Approximately 1 "stop" signal in 10,000 passed at danger (SPAD)
 - For an individual driver, corresponds to 1 in 17 years
 - 1 6% of these involve failure to respond to a signal.
 - This presentation is about reducing that 1 in 1 million to a smaller number
 - This presentation does not address directly fatigue, drugs, driver health, etc.
- Consequence of getting it wrong
 - Ladbroke Grove (UK 5 October 1999)
 - Driver passed signal at speed
 - Collision caused 31 deaths

Mental Processes

Vigilance	Signal sighting is a vigilance task that requires sustained levels of attention and alertness.	
Detection	Visible features of a signal are detected in the environment.	
Recognition	Signal perception - the signal's form is identified and discriminated from surrounding objects Association with line - signal is recognised as appropriate for the driver's route.	
Interpretation	Signal aspect is read and appropriate response is chosen	
Action	Driver responds to the signal	

Physics of the eye

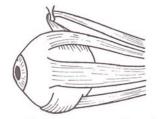


Fig. 2.1(a). The eye and the extra-ocular muscles used to move it.

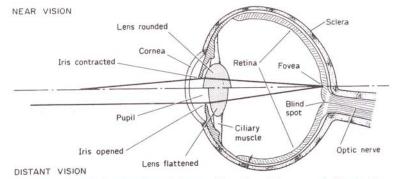


Fig. 2.1(b). A vertical section through the eye when adjusted for near and distant vision.

- Retina detecting part of the eye. Contains "rod" and "cone" cells. Also "blind spot".
- Fovea Within 1° of centre. Only part which can detect colour and detail (cones).
- Central vision within 5-8° of centre. Optimised for detecting change. Highest density of rods.

Digital view of the eye

- Only cone cells detect colour
- 120 cone cells across 1 degree of arc - 1 cone cell per ½ minute of arc
- 5 minutes arc needed to resolve 2 objects reliably
 - 1.2m at 800m

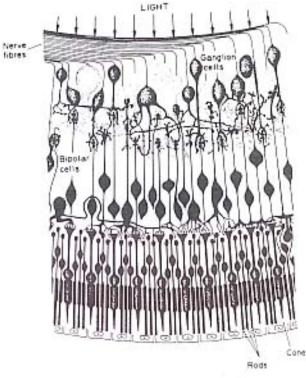
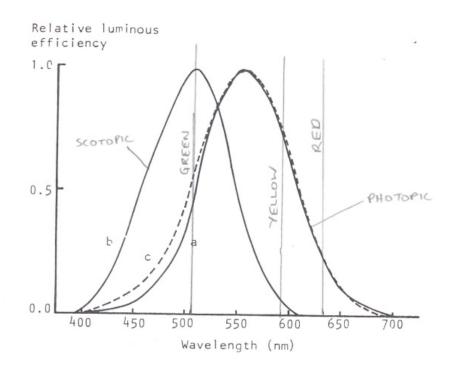
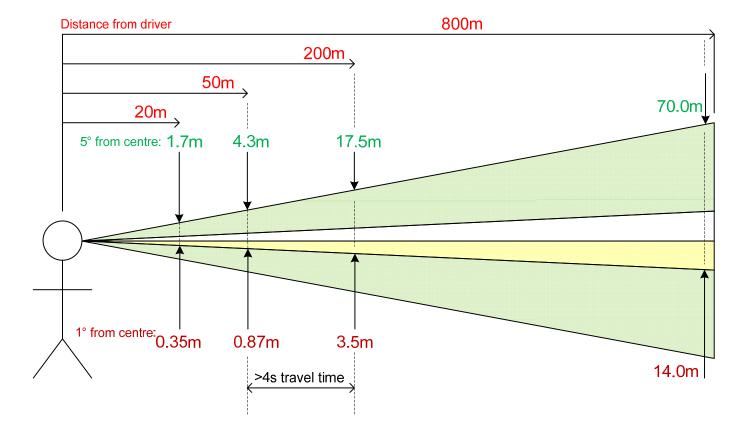



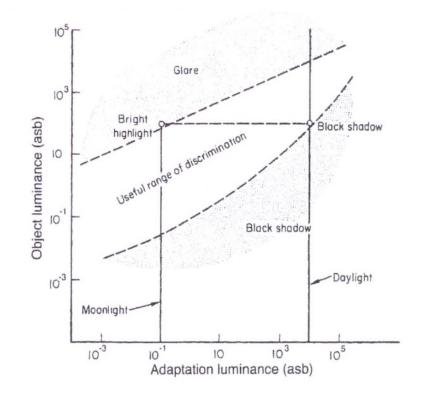
Fig. 2.2. A schematic illustration of the retinal structure.

Detection of colour



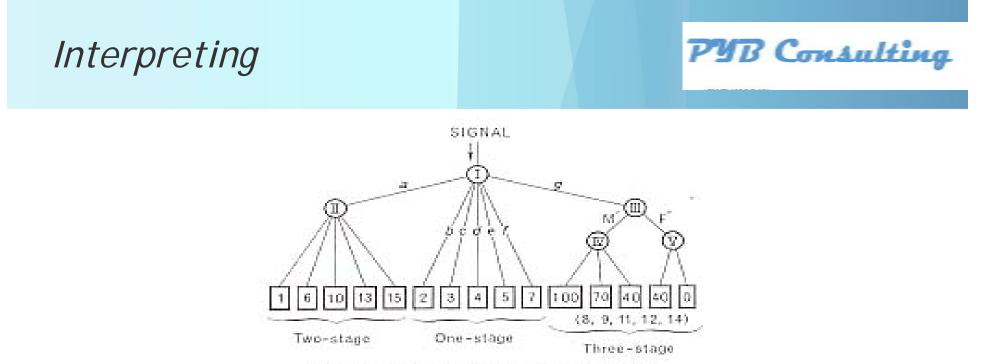
- Photopic (colour) vision cone cells only
 - Reliable detection limit ~1km
- Scotopic (no colour) vision
 - rod cells
 - Low light conditions
 - Peripheral vision
 - Detects change and movement
 - Sensitive to green
 - Cannot see red

Detection & Recognition



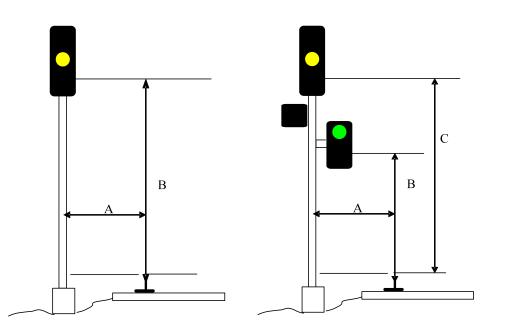
Driver central vision area at various distances

Avoidance of glare


- Eye responds to light levels over 6 orders of magnitude
- 3 orders of magnitude around adaption level
 - Colour not seen (washed out)for bright lights at night
 - Internal contrast ratio between 4:1 and 50:1 for good detection

Detection out of centre

Signal Aspect	Central (0.8°) Detect time (% detected)	Mid side (5.5°) Detect time (% detected)	Outer (18°) Detect time (% detected)
" G "	0.8s (97%)	2.1s (32%)	2.4s (5%)
" R"	0.8s (99%)	2.3s (28%)	3.8s (5%)
"Ү"	0.9s (93%)	1.2s (68%)	3.7s (6%)


6-11 Information-tree representing system A.

- Time to interpret varies with aspect complexity
- Interpreting "2 stage" signal adds ~1 second
- Accuracy depends on simplicity

Simple and Complex Signals

- Recognition times
 - 1.7 2.7s for simple
 - 2.6 3.5s for complex
- Error Rate
 - 37% higher for complex
 - Transposition (eg Y/G = G/Y) common

Good Practice

- Signal light at driver's eye level
 - Driver seated = 2.6 3.1m for locomotive
 - Signal "in your face" at 50m
 - Red aspect 3 5 m above rail
- Signal laterally close to track
- Light intensity
 - Sufficient contrast during day
 - Below "glare" threshold at night
- Good sighting from10s (ideal) approach to signal
 - 20 300m at common speeds
 - Limit of viewability ~800m

• Keep aspect sequence simple

- Avoid complex forms
- "Less" can be more