Degraded mode working

PYB Consulting

What is degraded mode?

- AS 61509 (Pt 7) Functional safety for electrical/ electronic/ programmable electronic safety related systems
 - C.3.11 Graceful degradation
 - This technique gives priorities to the various functions to be carried out by the system.
 - Recommended for SIL 3 & 4
- Obtaining the "protection of the interlocking"
 - Victorian Rule Book, Section 2, clause 18(m)
 - "The competent employee must use the applicable signal lever to ensure the **security of the interlocking**. However, if the line is track circuited, the signal itself will remain at "stop".
 - "The competent employee in charge of the platform directing the movement must take up a position convenient for controlling the operation by hand signal."

Safeworking modes

Normal Working

- Train movement occurs with proceed authority
 - Signal displays a proceed aspect
- Risk level minimal with proceed aspect displayed

Degraded Mode

- Train movement occurs with route set but no proceed aspect
 - Authority to move is by "Caution Order"
- Risk level similar order to normal working, with reduced train speed

Manual Safeworking

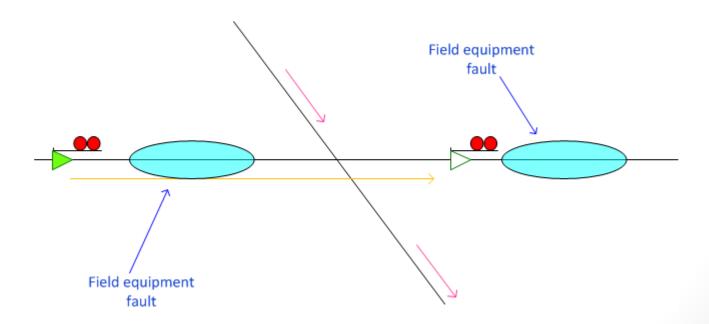
- Train movement occurs without route set ("unsignalled move")
 - Authority to move is by "Caution Order"
- Risk level higher than for normal working or degraded mode

What happens after the train stops?

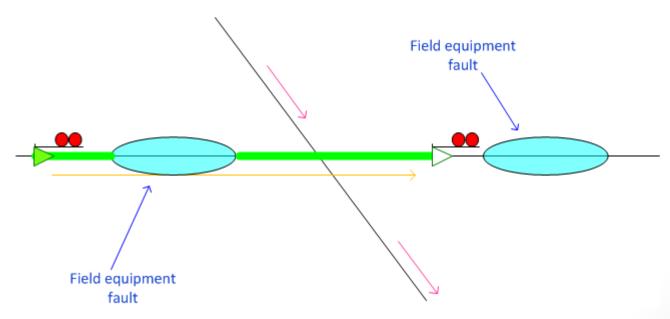
Why not just remove all the points?

- Tokyo
 - Home of "group running"
 - Even the trains are colour coded

Why not just remove all the points?


- Tokyo
 - Home of "group running"
 - Still makes good use of points

Moving trains under fault conditions


- Without the "protection of the interlocking"
 - Equipment fault occurs in the field.
 - Train movement occurs using "caution order" assisted by people in the field
 - "Unsignalled move" carries risk of unprotected conflict

Moving trains in degraded mode

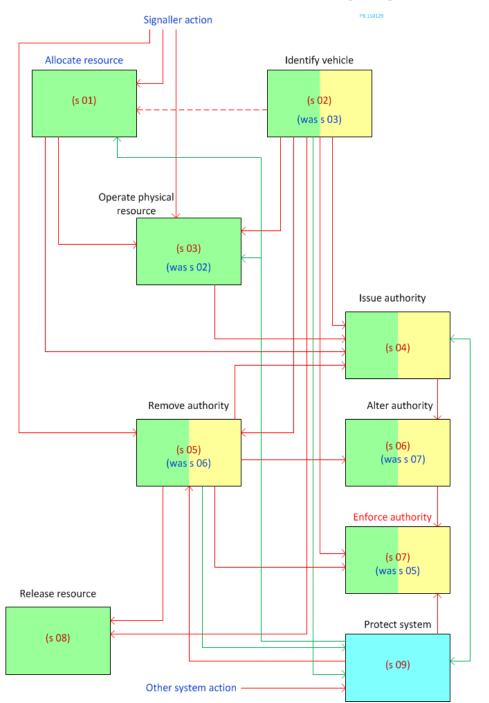
- With the "protection of the interlocking"
 - Equipment fault occurs in the field.
 - Train movement occurs using "caution order" assisted by people in the field
 - "Setting the route" removes risk of unprotected conflict
 - Signal displays "stop" aspect throughout

Back to the future

IRSE Proceedings 1925: Sadler

- "Continental practice in the working of points and signals by the compensated double wire transmission system".
- Route lever put to position first before moving point levers
- Route lever is locked by other route levers
- Point levers are locked by route levers

UK: May 1933


- First relay interlocked control panel at Goole Bridge signal box in the North Eastern Region
- Route lever is locked by other route levers

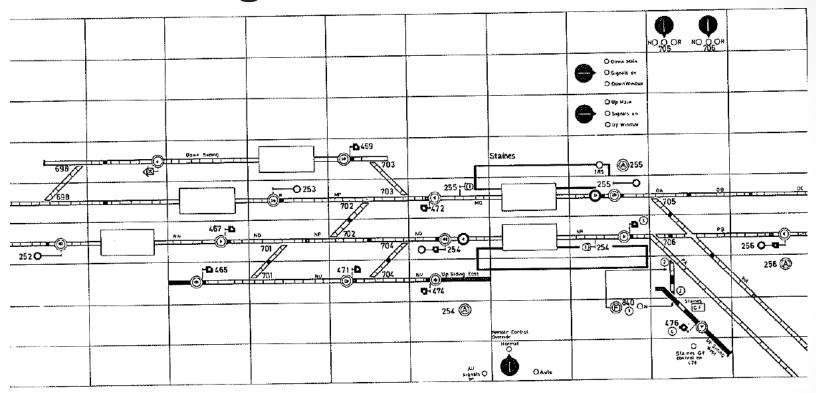
UK: 1962

- Route Relay interlockings utilising N-X panels
- Route setting interlockings use route setting principles

Generic Signalling Processes

Signalling framework

- Section 1 = Allocation of resources (setting of route)
 - Follows IRSE News March 2015 Tech Paper (Pascal Poisson & Jacques Pore)
 - Resource may be allocated if not allocated to a conflicting purpose
 - Variables are at level of signaller intentions (own or other signaller)
 - Allocation and release are not symmetrical
- Section 4 = Issue of authority (display of proceed aspect)
 - Authority can be given if:
 - Required resources are allocated
 - Field conditions required are present
 - Release and removal of authority may be symmetrical or not symmetrical
- Section 8 = Release of resources (route locking released)
 - Resource may be released when no longer required for a purpose
 - Train has passed clear of resource and it is no longer required
 - Authority has been removed and no train is approaching
 - Train has responded to removal of authority and does not require resource

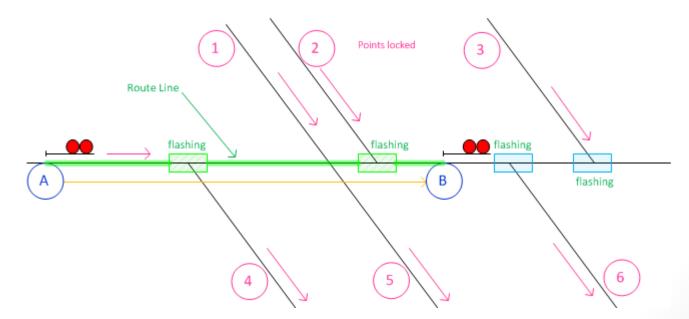


Conditions tested at appropriate levels

- Route level: internal states controlled by the Signaller
 - Interlocking is functioning
 - Opposing routes not set and not in progress
 - Points controlled to position or called in sequence
 - Local control and slot controls not given
 - Route level blocks not applied
- Aspect level: conditions in the field (may be continuous)
 - Points in correspondence
 - Track circuits clear
 - Cross boundary conditions normal
 - Aspect level blocks not applied
- Swinging overlaps (facing points)
 - Risk of signal dropping to stop during transition must be managed
 - Point transition timer provided
 - Aspect maintained till correspondence achieved or timer expires
 - Aspect step up prevented during transition

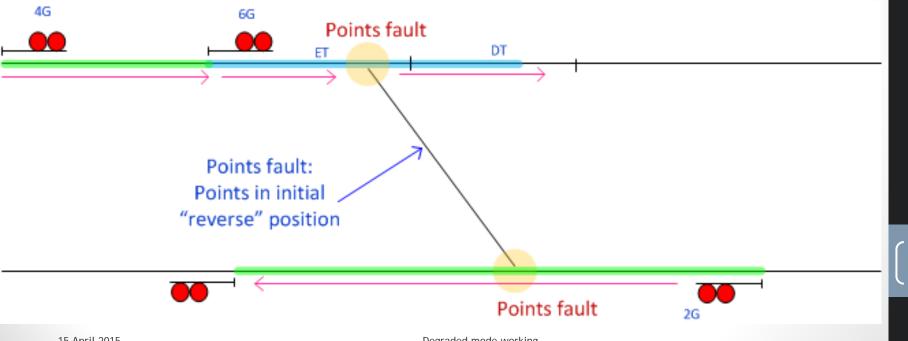
Route Setting Panel

Innovation occurs


- Signaller signals intent by pushing buttons (entrance or exit)
- Command is sent and route sets as points are commanded to position
- No proceed aspect can be displayed until points are in correspondence

Route setting panel with route set

• The signallers view


- "Green bar" or equivalent confirms "protection of interlocking".
- Any points not yet in position flash "out of correspondence"
- No proceed aspect can be displayed till all field conditions are met
- Conflicting routes are fully locked out

Route setting panel with routes set

- The signallers view
 - "Green bar" or equivalent confirms "protection of interlocking".
 - Any points not yet in position flash "out of correspondence"
 - No proceed aspect can be displayed till all field conditions are met
 - Conflicting routes are fully locked out

What can go wrong?

Train must always pass a red signal to reach failed points

- Points will flash out of correspondence
- Caution order will not be issued without somebody on the ground confirming that the points are secure

Low speed collision

- Both trains proceeding at "extreme caution"
- Collision at combined 30kph, crumple zone per train >300mm
- Passenger impact <3g
- This experiment is done in trams not infrequently

Low speed derailment

- Derailment at less than 25kph
- This experiment has been done, if less frequently

"Start against Stop" (deus ex machina) scenario

- Probability is not increased by having the route set
- It is the **change** in risk caused by the action which is important

Some of the details

J-bits

- It is an external input from the field
- Test at aspect level only
- Do not use to lock points

Flank points (when tested)

- Are points!
- Test controlled to position at route level
- Test in correspondence (or initially in correspondence) in aspect

Points in overlap

- May not be required for low speed (c light) moves
- Multiple route classes are required to support this requirement

Point handles (lessons learned)

- Turning off all the signal lamps is not recommended
- More than one point handle is needed to run trains

Other opportunities

Trailable points

- Standard practice on Continent (IRSE paper 1925)
- Signalled authority requires points in correspondence
- All other moves are at low speed suitable for trailing
- Only facing points require to be secured by clip

Time of operation locking

- Should not prevent the setting of any route
- Potential for pre-locking style faults with route level locking

Eppur si muove

- Observation by Galileo about the earth
- (under his breath)

Our Responsibility

Responsibility of experts

- Sheppard J:
 - "... the court will nevertheless take into account evidence given by persons experienced in the particular profession involved as to standards which are considered appropriate within a profession."
- Hochfelder v Ernst & Ernst:
 - "... we are not constrained to accept faulty standards of practice otherwise generally accepted in an industry or profession."
- There is a need for a profession to ensure that standards are "up to date" and have taken account changing circumstances and technology

