# RAMS – Is That When You Have More Than One Sheep ?



12 October 2012



### **Elements of Systems Engineering**

#### • Tombstone technology – the paradigm

- The old ways
- Alaska flight 261

#### • RAMS – Some low hanging fruit

- Tri-colour signals.
- Fixed train stops
- Why is this important?

2



# **The Traditional Approach**

#### • Tombstone technology

- Learning comes primarily from past accidents
- Special controls named after accidents
- Controls become recyclable ("Stop" signs)
- Training "on the job" by "experienced practitioners"
  - Heavily reliant on the quality of the experienced practitioners
  - Competence assessed based on time spent rather than knowledge or outcomes
  - Thin objective knowledge base
  - Risky to introduce innovation

#### • Consequence of getting it wrong

- You cannot change what you do not understand
- Alaska flight 261
- Crash killed all on board





# Alaska Flight 261

Jack screw assembly inspection and maintenance



### **A Better Way**

# • RAMS: Policy based on knowledge based analysis

- Emphasis on solid detailed understanding of failure modes and rates
- FMECA approach drives engineering
- Focus on system interfaces
- Provision of facilities to publish:
  - Historic failure rate data
  - FMECA models and data
  - Studies into fundamentals
- Standards based on common foundation of engineering knowledge

#### • Accidents no longer required

- Technology change underpinned by analysis
- FMECA can lead service experience
- Value added at system interfaces



PYB Consulting

# **RAMS: Tri-Colour LEDs**

- "S" is for "safety"
  - SIL-4 analysis includes assumptions about interfaces
  - Total system safety is not guaranteed by using SIL-4 components
- LED module failures
  - Traditional safety assured by circuit isolation and double cutting
  - SSI utilises "Output Interface" protection instead
  - Benefits to LED suppliers and users
  - SIL-4 safety assurance assumes SSI interface protection
- Examples of interfaces
  - Adjacent subsystem
  - Environment or inter-discipline system
  - Maintainer
  - User



### LED Signals – Traditional Relay



8

# **LED Signals – SSI Implementation**



# LED Signals – Failure Risk



12 October 2012

RAMS: Is That When You Have More Than One Sheep?

9





### **RAMS: LED Signals**

#### • "R" is for "reliability"

- Reliability is an outcome of:
  - Equipment characteristics,
  - Environment; and
  - Maintenance policy
- Supplier only controls dot point 1
- Bath tub curve may apply
  - Cars have bearings, but failures are rare
- LED signals
  - Supplier quotes "life data" as MTBF
  - What is mid-life MTBF?
  - Is data available?
  - Studies could add value



### **RAMS: LED Signals**

#### • "A" is for "availability"

- Availability is an outcome of:
  - Requirement
  - Reliability
  - Redundancy; and
  - Maintenance policy
- Supplier only controls part of dot point 2
- LED signals
  - Signal must display aspect to driver
  - Signal number must be identifiable
  - More availability can reduce reliability
- "M" is for "maintainability"
  - Maintainability is an outcome of:
    - Equipment design
    - Maintenance policy
    - Environment
  - Supplier and IM must consult



PYB Consulting

12



13

### **LED Signals – Model Configuration**

LED module block diagram



# PYB Consulting **Safety With Redundancy** Availability model with redundancy MTBF time MTTD MTTR Exposure to loss due to second failure 14 12 October 2012 RAMS: Is That When You Have More Than One Sheep?

# **RAMS: Fixed Train Stop**

#### • "A" is for "accident"

- Tombstone technology in action
- Current policy is a result of
  - Runaway from Broadmeadows
  - Inadequate detection/response regime
- Prior practice
  - Presence detected by inspection
  - Replaced when reported missing
- Revised practice
  - Adjustment detected electrically
  - Attendance by maintainer enforced
    - Approach signal set to stop
    - "maintainer will not attend otherwise"
- Is safety improved?
  - Need to consider new risks created



12 October 2012

### **Safety With Redundancy**

Morbus horibilis - prognosis



16

### **Rail Case**

#### • Accident scenario

- Signalling "Right Side" failure
- Train sees signal at stop and stops
- Driver applies the rules to pass the signal and proceed forward
- Train collides with train in section

#### • Noted cases

- Glenfield (NSW 1999)
- Craigieburn (Vic 2010)
- Holmesglen (Vic 2000)
- Aircraft (Vic 1999)
- Syndal (Vic 1989)
- Ringwood (Vic 1989)
- South Dynon (Vic 1986)

17

PYB Consulting



# **Our Responsibility**

#### • **Responsibility of experts**

- Sheppard J:
  - "... the court will nevertheless take into account evidence given by persons experienced in the particular profession involved as to standards which are considered appropriate within a profession."
- Hochfelder v Ernst & Ernst:
  - "... we are not constrained to accept faulty standards of practice otherwise generally accepted in an industry or profession."
- There is a need for a profession to ensure that standards are "up to date" and have taken account changing circumstances and technology



#### • "S" is for "studies"